Optimization of Tunnel Field-Effect Transistor-Based ESD Protection Network
نویسندگان
چکیده
The tunnel field-effect transistor (TFET) is a potential candidate for replacing the reverse diode and providing secondary path in whole-chip electrostatic discharge (ESD) protection network. In this paper, ESD characteristics of traditional point TFET, line TFET Ge-source are investigated using technology computer-aided design (TCAD) simulations, an improved TFET-based scheme proposed. It found that has lower trigger voltage higher failure current compared to TFETs. However, network more vulnerable primary due low thermal instability. Simulation results show choosing proper germanium mole fraction source region can balance ability risk, consequently enhancing robustness.
منابع مشابه
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
A hetero gate dielectric low band gap material DG Tunnel FET is presented here. The investigated device is almost free from short channel effects like DIBL and t V rolloff. Simulation of the device characteristics shows significant improvement over conventional double gate TFET when compared interms of on current, ambipolar current, roll-off, miller capacitance and, device delay time. Simulatio...
متن کاملSwitching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor
Abstract: In this paper, a novel tunnel field effect transistor (TFET) is introduced, thatdue to its superior gate controllability, can be considered as a promising candidate forthe conventional TFET. The proposed electrically doped heterojunction TFET(EDHJTFET) has a 3D core-shell nanotube structure with external and internal gatessurrounding the channel that employs el...
متن کاملImproved drain current characteristics of tunnel field effect transistor with heterodielectric stacked structure
In this paper, we proposed a 2-D analytical model for electrical characteristics such as surface potential, electric field and drain current of Silicon-on-Insulator Tunnel Field Effect Transistor (SOI TFETs) with a SiO2/High-k stacked gate-oxide structure. By using superposition principle with suitable boundary conditions, the Poisson’s equation has been solved to model the channel r...
متن کاملTunnel-field-effect-transistor based gas-sensor: Introducing gas detection with a quantum-mechanical transducer
A gas-sensor based on tunnel-field-effect-transistor (TFET) is proposed that leverages the unique current injection mechanism in the form of quantum-mechanical band-to-band tunneling to achieve substantially improved performance compared to conventional metal-oxide-semiconductor fieldeffect-transistors (MOSFETs) for detection of gas species under ambient conditions. While nonlocal phonon-assist...
متن کاملCarbon nanomaterials field-effect-transistor-based biosensors
Carbon nanomaterials field-effect transistor (FET)-based electrical biosensors provide significant advantages over the current gold standards, holding great potential for realizing direct, label-free, real-time electrical detection of biomolecules in a multiplexed manner with ultrahigh sensitivity and excellent selectivity. The feasibility of integrating them with current complementary metal ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crystals
سال: 2021
ISSN: ['2073-4352']
DOI: https://doi.org/10.3390/cryst11020128